A Bayesian network approach to making inferences in causal maps
نویسندگان
چکیده
منابع مشابه
A Bayesian network approach to making inferences in causal maps
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
متن کاملTheory and Methodology A Bayesian network approach to making inferences in causal maps
The main goal of this paper is to describe a new graphical structure called ÔBayesian causal mapsÕ to represent and analyze domain knowledge of experts. A Bayesian causal map is a causal map, i.e., a network-based representation of an expertÕs cognition. It is also a Bayesian network, i.e., a graphical representation of an expertÕs knowledge based on probability theory. Bayesian causal maps enh...
متن کاملAn optimization approach for making causal inferences
To make causal inferences from observational data, researchers have often turned to matching methods. These methods are variably successful. We address issues with matching methods by redefining the matching problem as a subset selection problem. Given a set of covariates, we seek to find two subsets, a control group and a treatment group, so that we obtain optimal balance, or, in other words, ...
متن کاملA Semi-Causal Bayesian Network Approach to Prognosis
Various machine learning techniques have been proposed for the development of prognostic models, including those based on Bayesian networks. An advantage of a Bayesian network compared to many other classifiers is that the model can provide insight by representing the temporal structure of the domain. While it has been shown that Bayesian networks can perform well in terms of classification acc...
متن کاملA Bayesian Approach to Learning Causal Networks
Whereas acausal Bayesian networks represent probabilistic independence, causal Bayesian networks represent causal relationships. In this paper, we examine Bayesian methods for learning both types of networks. Bayesian methods for learning acausal networks are fairly well developed. These methods often employ assumptions to facilitate the construction of priors, including the assumptions of para...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Operational Research
سال: 2001
ISSN: 0377-2217
DOI: 10.1016/s0377-2217(99)00368-9